

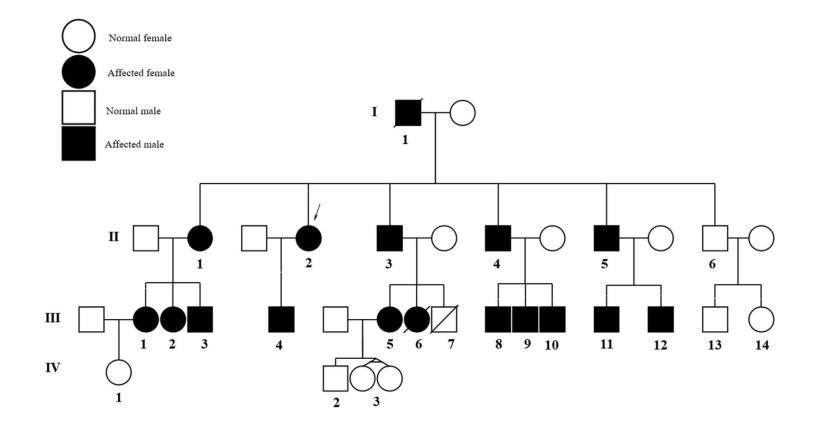
کروه قلب و عروق دانشگاه علوم پزشکی بیرجند مرکز میروند مروند مرکز میروند مروند میرو می می می موند مروند مموند مروند میرو می موند موند میموند موند میمو

Clinic and genetic screening in a large Iranian family with Marfan syndrome _ a case study

> ارائه دهنده: سرکارخانم فرزانه وفایی دانشجوی دکتری پژوهشی

استاد راهنما: جناب آقای دکتر میری مقدم

۵۵ شنبه ۲۶ باب ۱۴۰۲ ۷ مایت ۸ صبح ۷ ماین کنفرانس طبقه ه بیمار متان رازی



Case	Age	Cardiovascular involvement	Ocular involvement	Complication	Treatment
Father	63	MVP, MR, AI, ARD=31 mm	Iridodonesis, Ectopia lentis, VA=1 m CF	Cataract Deceased	Lens extraction OS follow up annually
First daughter	45	MVP, MR, AI, ARD=34.9 mm	Iridodonesis, Ectopia lentis, VA=0.1	Three pregnancies without complication	Lensectomy + vitrectomy + buckling + silicone oil, follow up annually
Second daughter	42	MVP, MR, ARD=22.1 mm	Iridodonesis, Ectopia lentis, VA=5 m CF, blindness OS	One pregnancy without complication, Bentall procedure, stroke	Glasses, Follow up annually, propranolol warfarin
First son	39	MVP, MR, ARD=29 mm	Iridodonesis, Ectopia lentis, VA=3 m CF	Surgery for cataract and Bentall procedure for RD	Glasses, follow up annually, propranolol warfarin

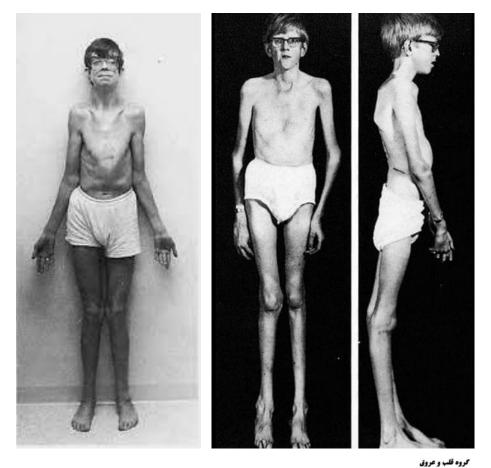
Patient characteristics

Second son	37	MVP, MR, ARD=26	Iridodonesis, Ectopia lentis, VA=4 m CF	Bentall procedure for aortic dissection	Lensectomy + vitrectomy + bukeling + silicon oil, glasses, follow up annually, propranolol warfarin
Third son	31	MVP, MR, AVR, ARD=26.8 mm	Iridodonesis, Ectopia lentis, VA=4 m CF	Bentall procedure for RD	Follow up annually, propranolol warfarin
4 th son	29	Normal	Normal	-	Follow up annually
First grandchild	24	MVP MR	Iridodonesis, Ectopia lentis, VA=1 m CF	One pregnancy without complication	Glasses, follow-up annually
Second grandchild	20	MVP, MR, ARD=29.1	Iridodonesis, Ectopia lentis, VA=1 m CF	-	Follow-up annually
Third grandchild	18	MVP, MR, AI, ARD=21.8	Iridodonesis, Ectopia lentis, VA=1 m CF	-	Follow up annually
4 th	16	MVP, MR,	Iridodonesis,	-	Follow up annually

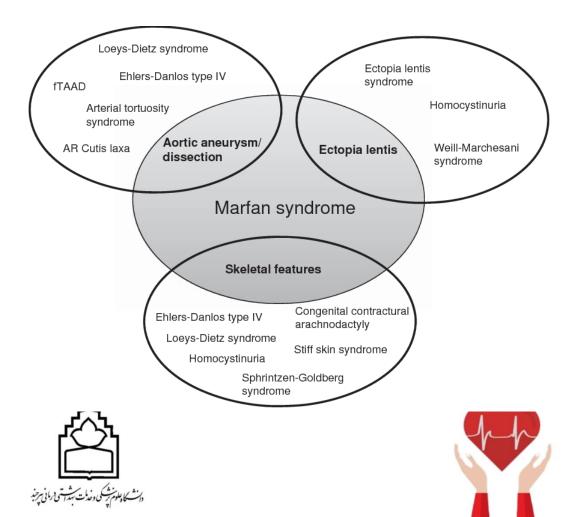
4 th grandchild	16	MVP, MR, ARD=37.7	Iridodonesis, Ectopia lentis, VA=1 m CF	-	Follow up annually
5 th grandchild	13	ARD=22	Iridodonesis, Ectopia lentis, VA=1 m CF	Deceased	Follow up annually
6 th grandchild	12	MVP, AVP, ARD=12.3	Iridodonesis, Ectopia lentis, VA=1 m CF	-	Follow up annually
7 th grandchild	11	MVP, MR, ARD=23.7	Iridodonesis, Ectopia lentis, VA=1 m CF	-	Follow up annually
8 th grandchild	10	MVP, MR, ARD=31.1	Iridodonesis, Ectopia lentis	-	Follow-up annually
9 th	9	MVP, TR, ARD=13.7	Iridodonesis, Ectopia lentis	-	Follow-up annually
10 th	5	MVP, ARD=24.4	Iridodonesis, Ectopia lentis	-	Follow-up annually
11 th	7	Normal	Normal	Deceased	Follow-up annually

12 th	4	MVP, ARD=23.1	Iridodonesis,	-	Follow-up annually
			Ectopia lentis		
13 th	1	Normal	Normal	-	Follow-up annually
First great-	2	Normal	Normal	-	Follow-up annually
grand child	months				

Case ID	Age (year)	Gender	Cardiac disease	Skeletal abnormalities	Ocular abnormalities
11	67 (deceased)	Male	+	+	+
111	49	Female	+	+	+
112	46	Female	+	+	+
113	43	Male	+	+	+
114	41	Male	+	+	+
115	35	Male	+	+	+
116	33	Male	-	-	-
1111	27	Female	+	+	+
1112	22	Female	+	+	+
1113	14	Male	+	+	+
1114	16	Male	+	+	+
1115	24	Female	+	+	+
1116	13 (deceased)	Female	-	+	+
1117	7 (deceased)	Male	-	-	-
1118	18	Male	+	+	+
1119	15	Male	+	+	+
III10	14	Male	+	+	+
III11	10	Male	+	+	+
III12	8	Male	+	+	+
III13	5	Male	-	-	-
III14	1	Female	-	-	-
IV1	4	Female	-	-	-
IV2	3	Male	-	-	-
IV3	1	Female (identical twins)	-	-	-



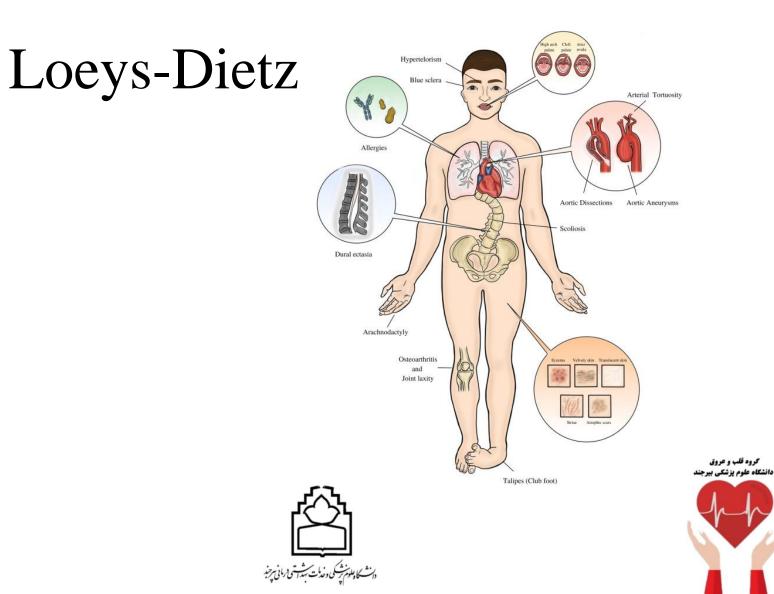

Marfan syndrome is a rare ٠ inherited disorder that affects connective tissue . There are many different signs such as: a long narrow, body, hyperextensible joints, tearing or displacement of the eye lens, dilations and tears in blood vessels. These can vary in severity.

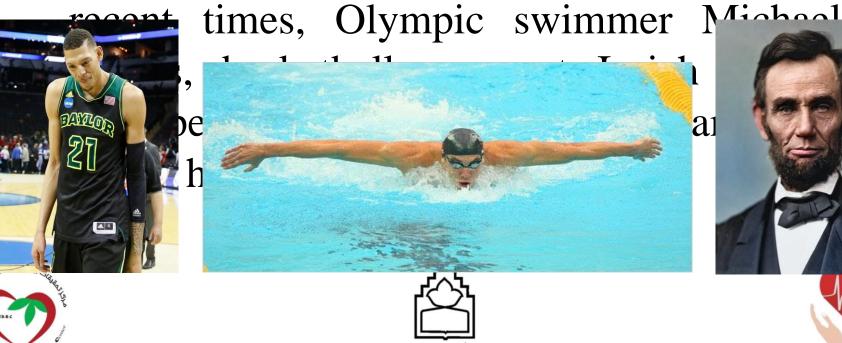


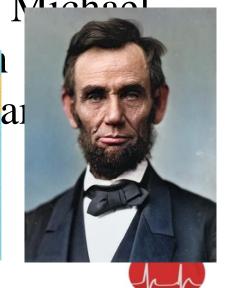
Many different heritable connective tissue disorders (HCTD) have been described

- Marfan syndrome (MFS)
 FBN1
- Ehlers-Danlos syndrome (EDS) COL5A/COL5A2 (collagen protein)
- Loeys-Dietz syndrome (LDS) TGBR1/2, SMAD2/3, or TGFB2/3

Ehlers-Danlos syndrome

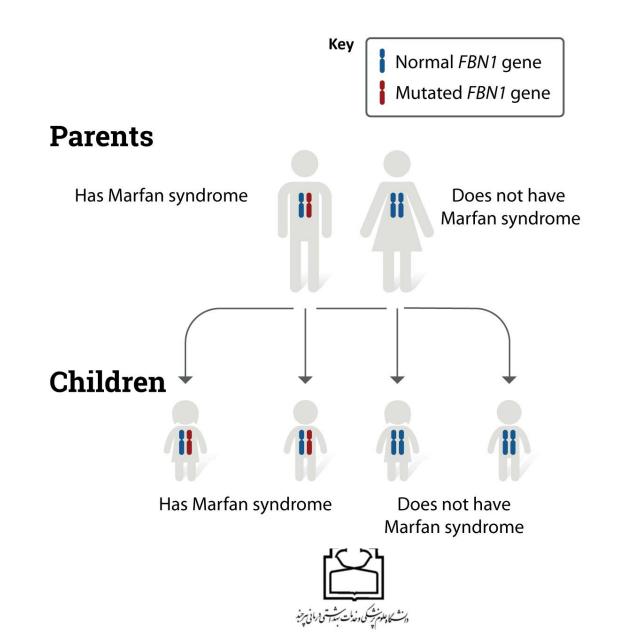


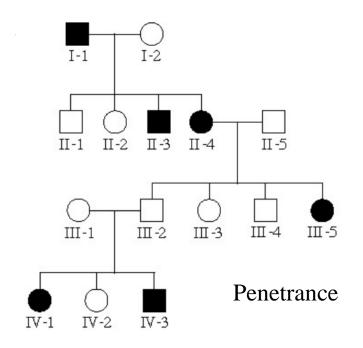


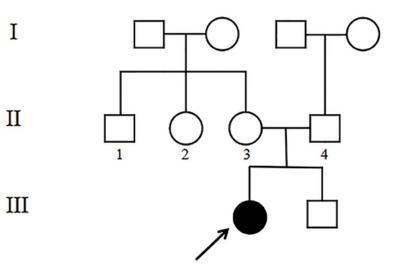


• Abraham Lincoln is the most famous American who had Marfan syndrome. So did Julius Caesar and Tutankhamen. In more

Epidemiology


- Marfan syndrome (MFS) is one of the most common inherited disorders affecting connective tissue, with a reported incidence of 1 in 3000 to 500 individuals.
- prevalence thought t be regardless of sex and ethnicity




flar

گروه قلب و عروق دانشگاه علوم پزشکی بیرجند

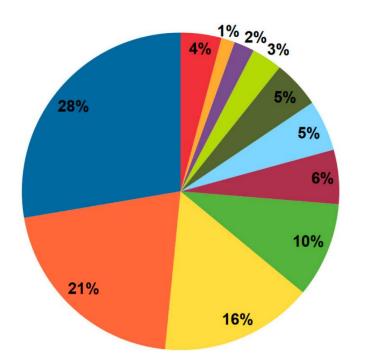

De novo mutations

Diagram presenting reasons for Marfan syndrome suspicion

asthenic habitus
 family history
 joint hypermobility
 chest deformity

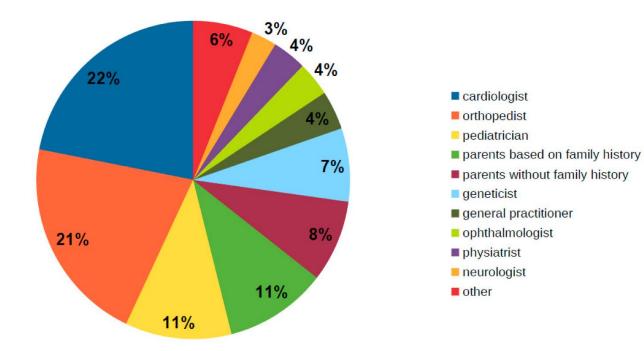
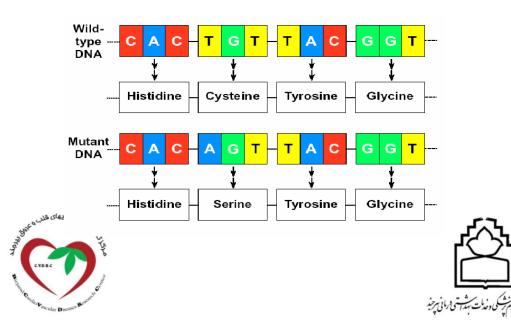
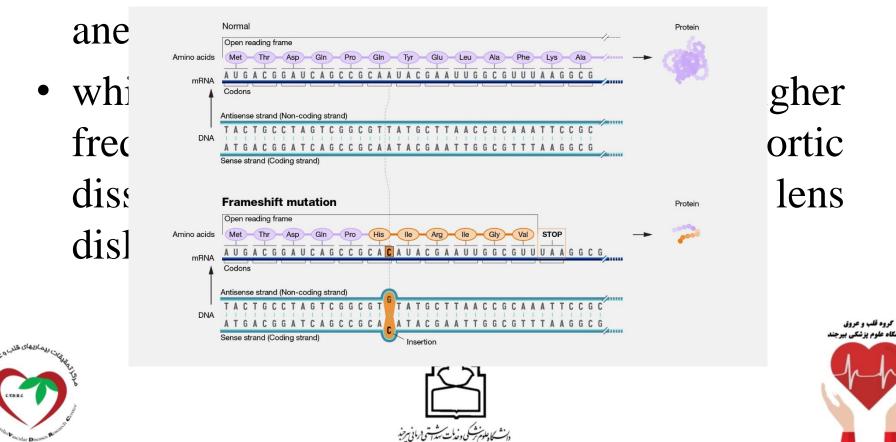
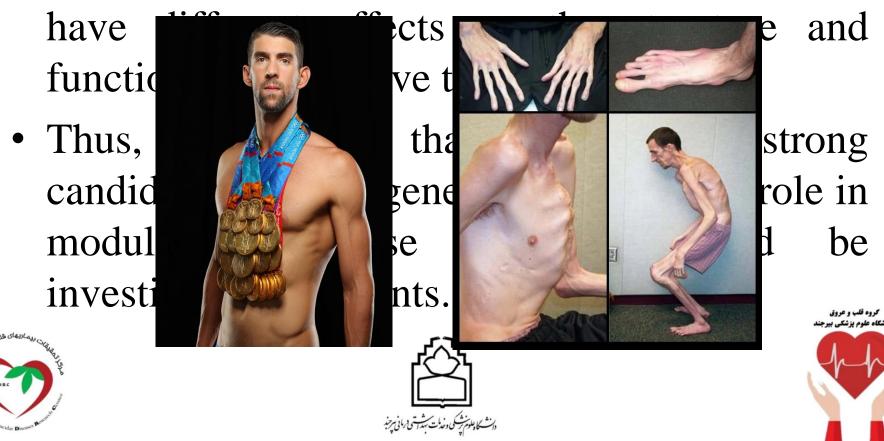

- ectopia lentis
- scoliosis
- aortic dilatation
- arachnodactyly
- fatigue
- pneumothorax
- other

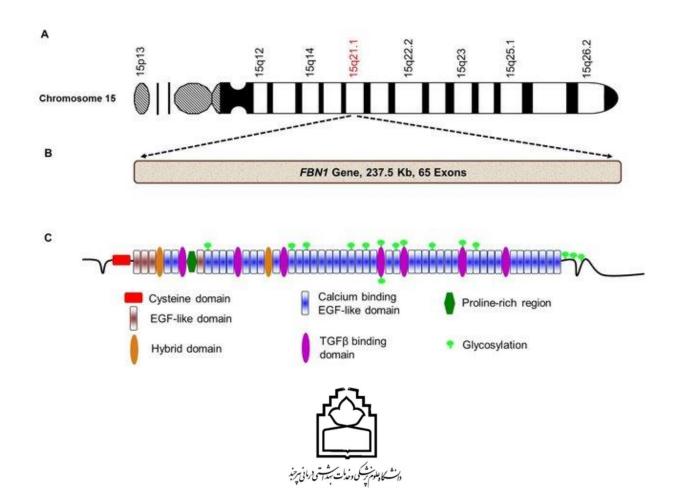
Diagram presenting specialists who were first to suspect Marfan syndrome (including parents that suspected this syndrome)

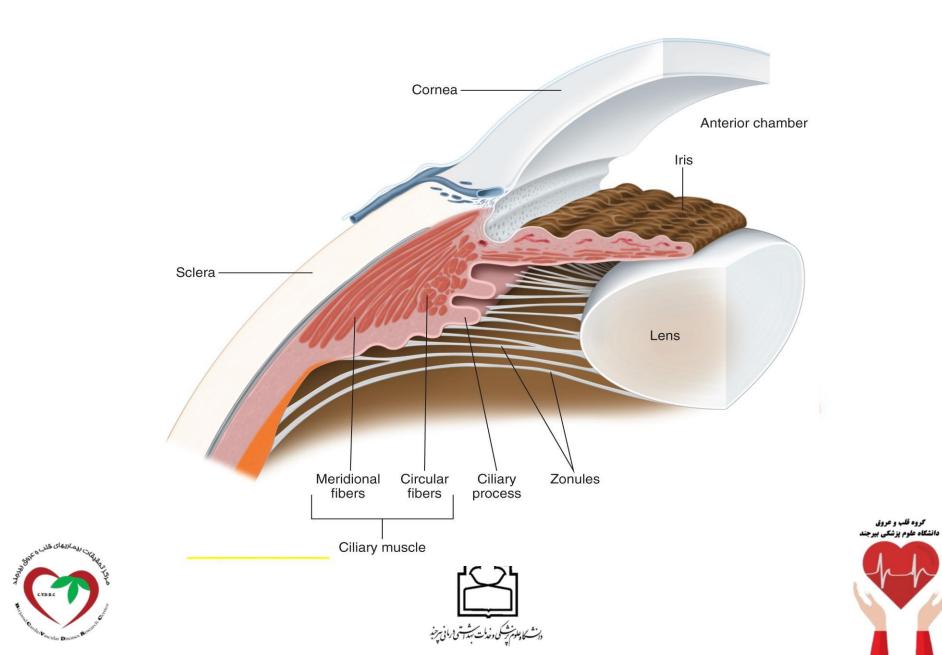



Etiology

- Marfan syndrome is a genetic disorder caused by mutations in the FBN1 gene, which provides instructions for making a protein called fibrillin-1.
- Currently, over 2,900 distinct FBN1 mutations have been identified in patients with MFS.
- Missense mutations are the major type found in patients with MFS, and these mutations mainly affect cysteine residues.
- in about 25% of cases, the condition occurs due to a spontaneous mutation in the FBN1 gene, without any family history of the disorder.




• There was a significantly higher frequency of frameshift and nonsense mutations observed in aortic dissection than in aortic


• It is important to note that Marfan syndrome can vary widely in its severity and presentation, as different mutations in the FBN1 gene can

Gene structure

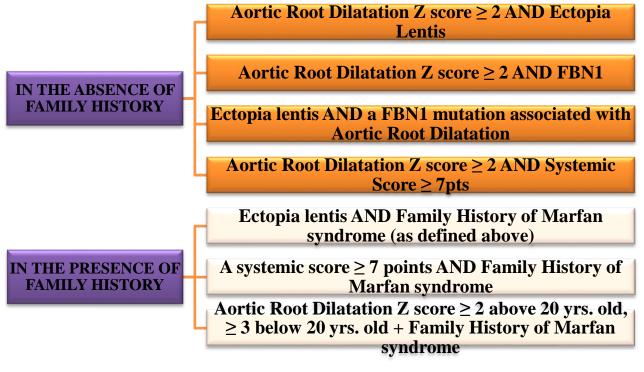
بهان بيمانيهاى قلب مربيهاي ويربي ج گروه قله و عروق دانشگاه علوم پزشکی بیرجند

Ghent criteria

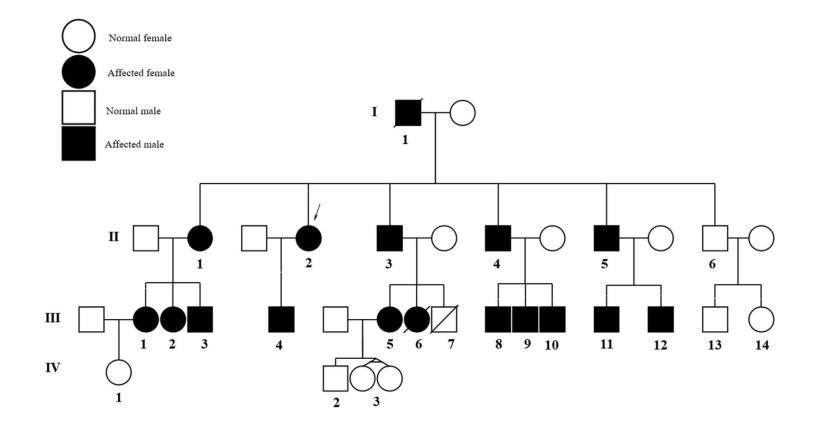
System	Major criteria	Minor criteria
Family history	Independent diagnosis in parent, child or sibling	None
Genetics	Mutation FBN1	None
Cardiovascular	Aortic root dilatation, dissection of ascending aorta	Mitral valve prolapse, calcification of the mitral valve (<40 years), dilatation of the pulmonary artery, dilatation/dissection of descending aorta
Ocular	Ectopia lentis	2 needed of the following: flat cornea elongated globe myopia
Skeletal	At least 4 of the following: pectus excavatum needing surgery, pectus carinatum, pes planus, positive wrist or thumb sign, scoliosis >20° or spondylolisthesis, armspan-height ratio >1.05, protrusio acetabulae, diminished extension elbows (<170°)	For the skeletal system to be involved 2–3 major, or 1 major and 2 minor signs should be present: moderate pectus excavatum, high arched palate, typical facial features, joint hypermobility
Pulmonary Skin		Spontaneous pneumothorax, apical bulla Striae, recurrent or incisional herniae
Central nervous system	Lumbosacral dural ectasia	

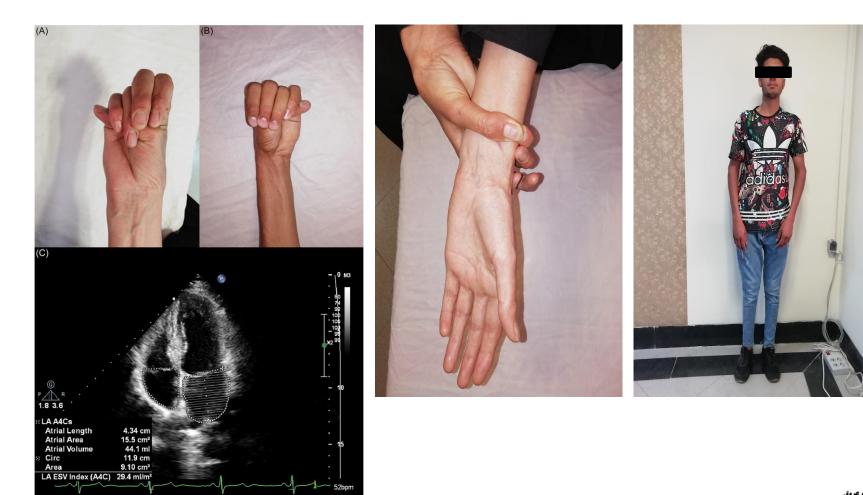
 Table 2.
 Systemic score for Marfan syndrome.

POINTS	FEATURES
3	Wrist AND thumb sign (1 point for wrist OR thumb sign)
2	Pectus carinatum deformity (1 point for pectus excavatum or chest asymmetry)
2	Hindfoot deformity (1 point for plain pes planus)
2	Pneumothorax
2	Dural ectasia
2	Protrusio acetabuli
1	Reduced upper segment/lower segment ratio AND increased arm/height AND no severe scoliosis
1	Scoliosis or thoracolumbar kyphosis
1	Reduced elbow extension
1	3/5 facial features: dolichocephaly, enophthalmos, downslanting palpebral fissures, malar hypoplasia, retrognathia
1	Skin striae
1	Myopia > 3 diopters
1	Mitral valve prolapse (all types)

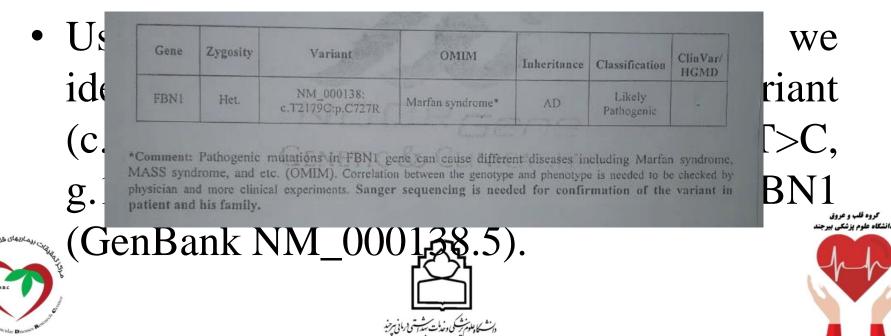

Maximum of 20 points. A score of ${\geq}7$ indicates systemic involvement. Adapted from Loeys et al. 35

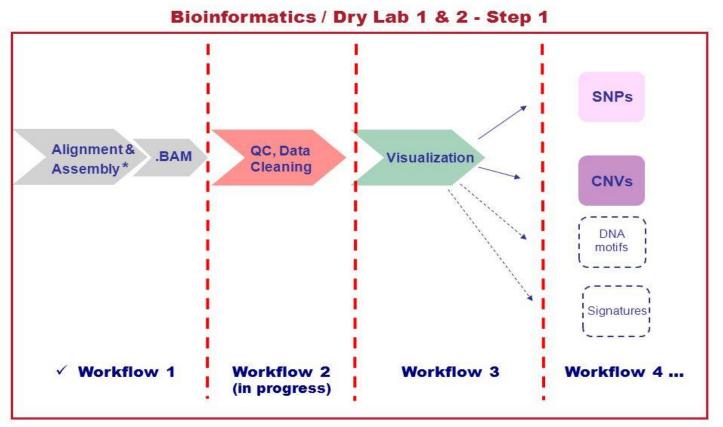
The Revised Ghent Nosology for Marfan syndrome relies on seven rules as indicated below


Family presentation



- Our proband was a **46-year-old** female patient with general **skeletal**, **visual**, **and cardiovascular problems**. She was the second sibling of non-consanguineous parents, originally from eastern Iran.
- The onset of ocular problems occurred when she was 20 years old with low visual acuity and slow progressive vision loss. The proband had a height of 169 cm and body mass index of 17 kg/m2. She had a history of heart and brain strokes and was regularly taking warfarin.
- The son of the proband (III:4), 16 years old, had a Marfan phenotype. He had a height of 197 cm and body mass index of 17 kg/m2. had various clinical features including, ocular problems, orthodontic problems, thumb and wrist signs, striae distensae, and pectus deformity.

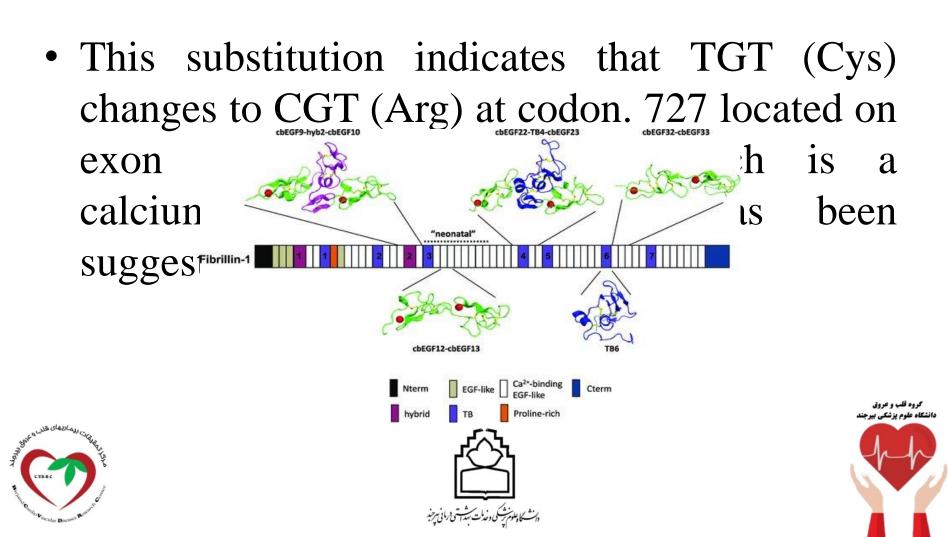


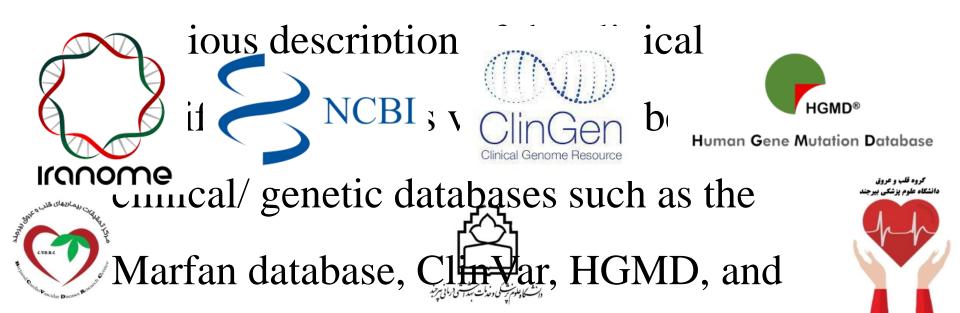


Finding

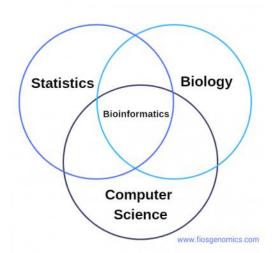
• To identify the genetic alterations causing this phenotype, we performed WES on the patient's (II:2) DNA sample.

NGS Pipeline: general plan




کروه قلب و عرون دانشگاه علوم پزشکی بیرجند

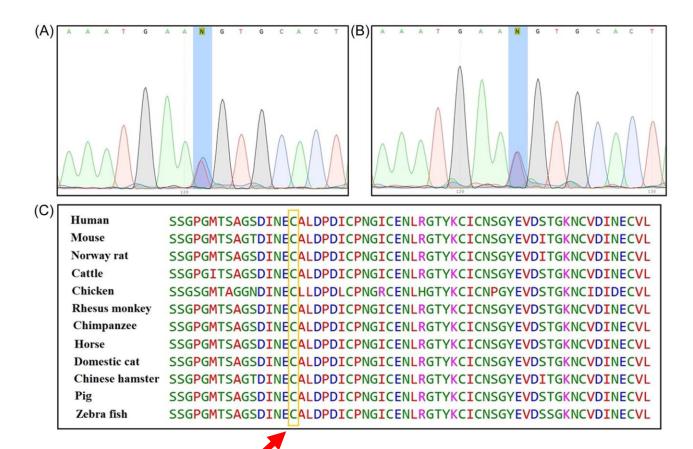
Finding



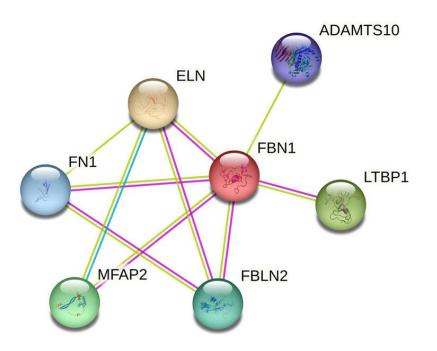
• The variant has not been previously reported in the GME, ExAC, 1K Genome Project

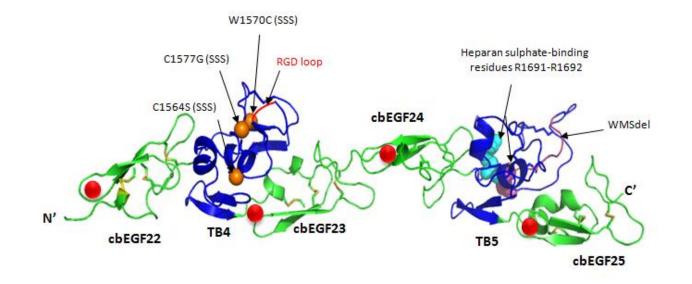
Phase 3, dbSNP, and Iranome databases. No

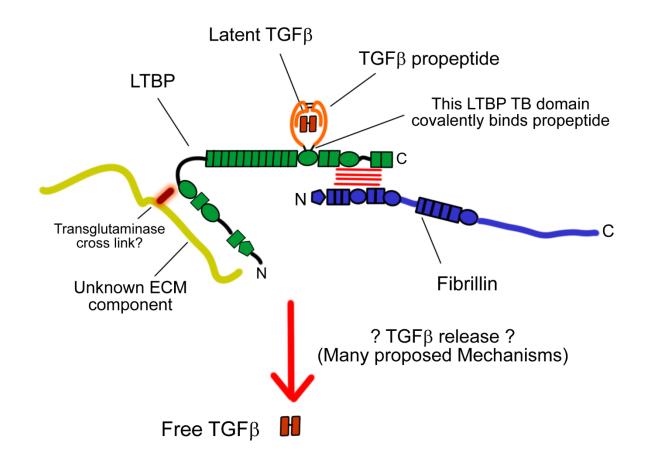
In silico prediction analyses of the FBN1 c.2179T>C TABLE 3 variant.

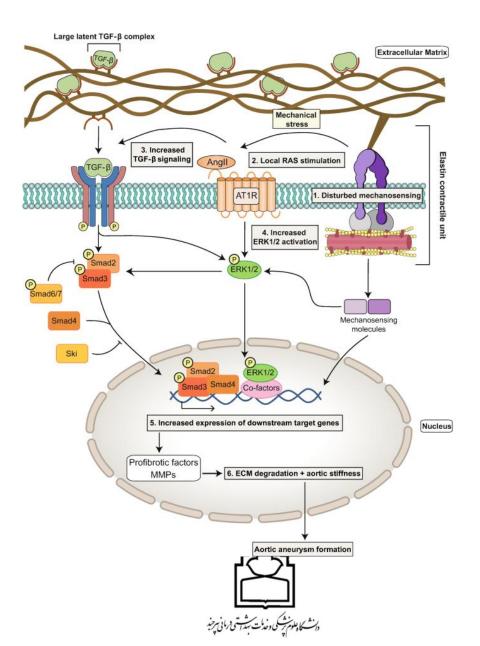


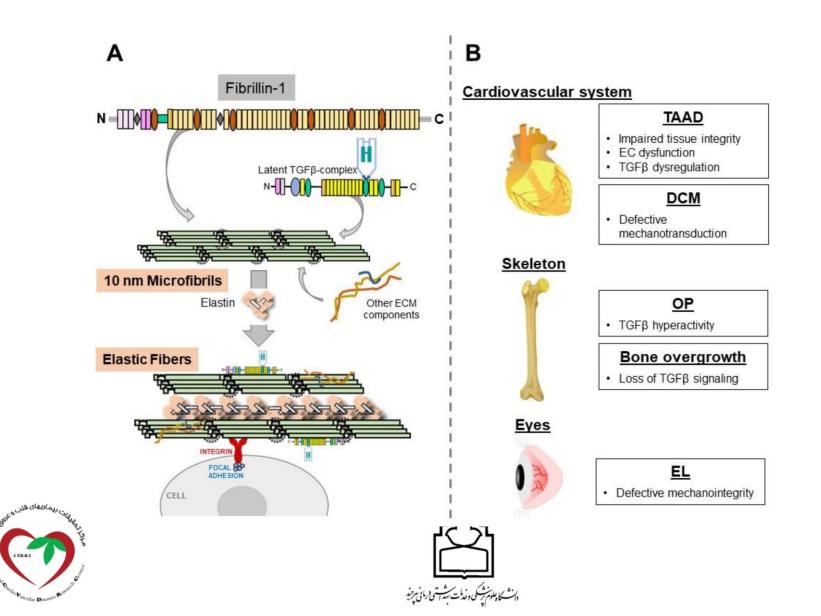
	Algorithm	Prediction	Score
Bioinformatics ev	PhyloP100	Highly conserved	8.94
	PhastCons100	Highly conserved	1.0
	SIFT	Damaging	0.001
	Polyphen-2	Probably damaging	0.997
	LRT	Deleterious	0
	PROVEAN	Damaging	-10.93
	PrimateAl	Pathogenic	0.917
Biology	Mutation Taster	Disease causing	1.0
Bioinformatics	MutPred	Pathogenic	0.996
Computer Science www.fiosgenomics.com	FATHMM	Damaging	-5.91
	EIGEN	Pathogenic	1.082
	M-CAP	Damaging	0.969
	CADD	Deleterious	27
	BayesDel addAF	Damaging	0.577
	MetalR	Damaging	0.990
	MetaSVM	Damaging	0.967
	r7		



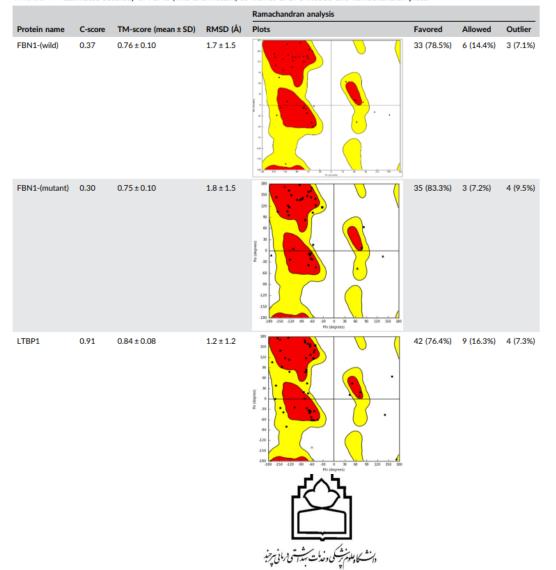








کروه قله و عروق دانشگاه علوم پزشکی بیرجند



- To better understand in Florence Function Figure International Mechanics and structural consequences of the p.C727R mutation in FBN1, the online ITASSER server was used to generate models of the EGF-like 11 domain, calcium-binding domain of Fibrillin, and C-terminal LTBP1 fragment for the mutant and wild-type.
- To better understand the molecular mechanics and structural consequences of the p.C727R mutation in FBN1, the online ITASSER server was used to generate models of the EGF-like 11 domain, calcium-binding domain of Fibrillin, and C-terminal LTBP1 fragment for the mutant and wild-type.

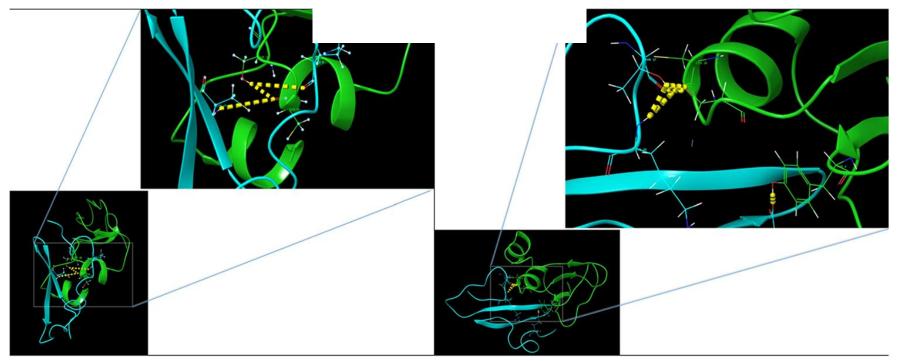
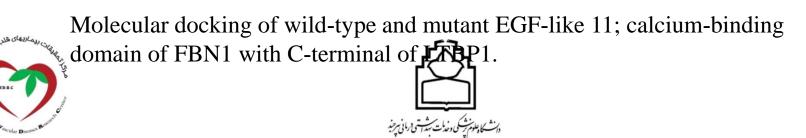


TABLE 4 Estimated accuracy of FBN1 (wild and mutant) as well as LTBP1 models and Ramachandran plots.



Wild type FBN1-LTBP1

Mutant FBN1-LTBP1

Management

Management of Marfan syndrome involves a multidisciplinary approach, including medical, surgical, and lifestyle interventions.

* Medical: Beta blockers or angiotensin receptor blockers

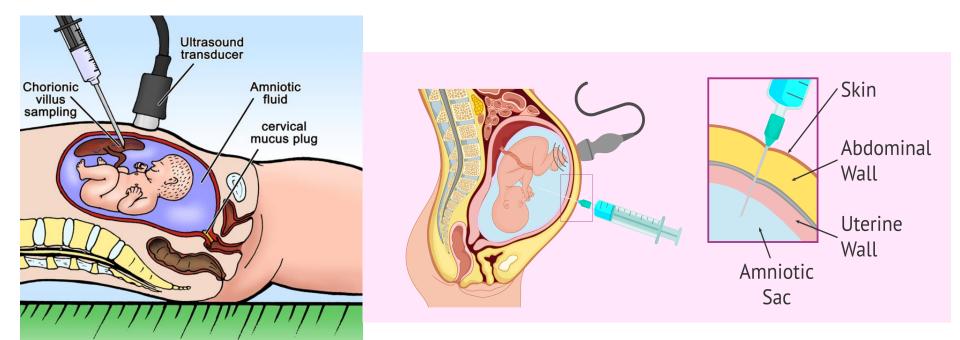
Surgery: aortic root replacement or repair to prevent aortic dissection, mitral valve repair or replacement, or surgery to correct skeletal abnormalities such as scoliosis

Lifestyle: avoiding strenuous physical activities

□ added stress on the aorta

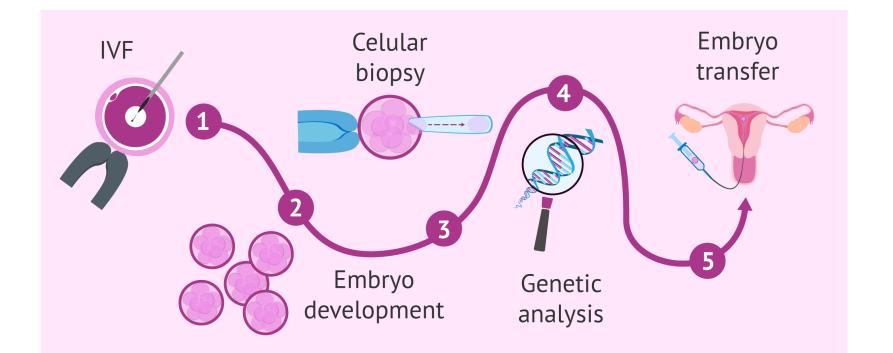
• worsening lens dislocation or a retinal detachment

□ Bruising and internal hemorrhaging



Genetic counseling

• prenatal testing can be conducted for Marfan syndrome. Two common methods of prenatal testing for genetic disorders like Marfan syndrome are chorionic villus sampling (CVS) between 10 and 13 weeks of pregnancy and amniocentesis between 15 and 20 weeks of pregnancy.


Additionally, in-vitro fertilization (IVF) with pre-implantation genetic diagnosis (PGD) can be used for couples who are at risk of

Received: 25 July 2023 Re

Revised: 13 September 2023 Accepted: 12 October 2023

DOI: 10.1002/hsr2.1647

ORIGINAL RESEARCH

Health Science Reports WILEY

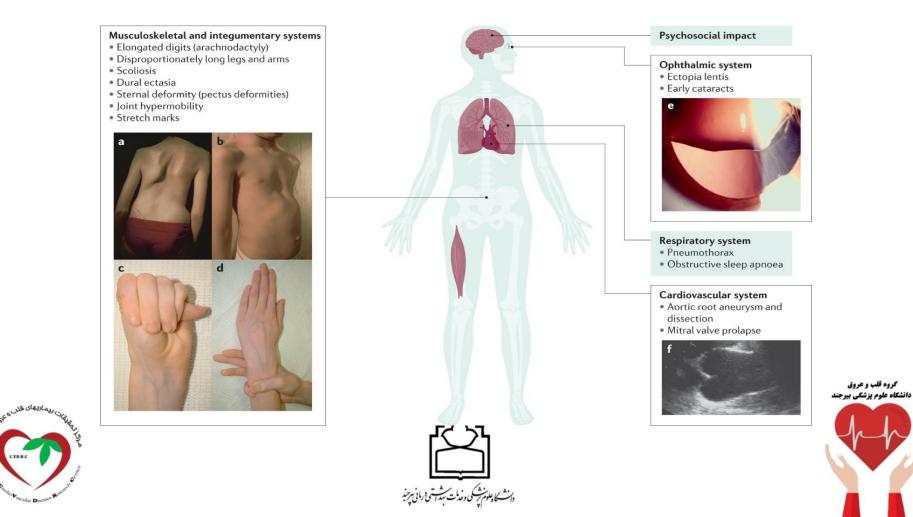
Clinical and genetic screening in a large Iranian family with Marfan syndrome: A case study

Farzane Vafaeie¹ | Zahra Miri Karam^{2,3} | Abolfazl Yari^{1,3} | Hossein Safarpour¹ | Tooba Kazemi⁴ | Shokoofeh Etesam⁵ | Mojtaba Mohammadpour⁶ | Ebrahim Miri-Moghaddam⁴ [©]

بسم الله الرحمن الرحيم

MARFAN SYNDROME KAZEMI T 28 Oct 2023

Figure 1: Family members with Marfan's syndrome. From left to right: father, first son and his daughter, second son and his two sons, third son, second daughter and her son, first daughter and her daughter.


- Dean, J. Marfan syndrome: clinical diagnosis and management. *Eur J Hum Genet* 15, 724–733 (2007).https://doi.org/10.1038/sj.ejhg.5201851
- Milewicz DM, Braverman AC, De Backer J, Morris SA, Boileau C, Maumenee IH, Jondeau G, Evangelista A, Pyeritz RE. Marfan syndrome. *Nature Review Dis Primers. 2021* Sep 2;7(1):64. doi: 10.1038/s41572-021-00298-7.

Marfan syndrome

Ghent II criteria

Systemic features excluding aortic disease, ectopia lentis and family history for the diagnosis of MFS.

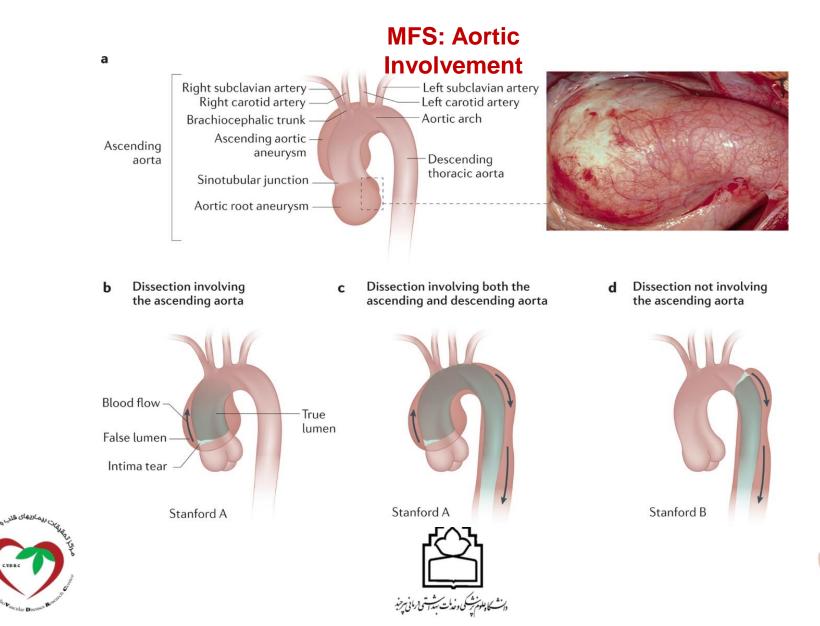
- Wrist and thumb signs (3 points)
- Wrist or thumb sign (1 point)
- Anterior chest deformity (2 points)
- Hind foot deformity (2 points)
- Pneumothorax (2 points)
- Dural ectasia (2 points)
- Protrusion acetabuli (2 points)
- Reduced upper segment or lower segment and increased arm span to height ratio (1 point)
- Reduced elbow extension (1 point)
- Facial features: dolichocephaly, enophthalmos, downslanting palpebral fissures, malar hypoplasia, and retrognathia (1 point if 3 out 5 features are present)
- Skin striae other than due to pregnancy or obesity (1 point)
- Myopia >3 diopters (1 point)
- Mitral valve prolapse (1 point)

The total score of the systemic features is used in the diagnostic criteria.

MFS: Diagn osis

Requirement for the diagnosis of Marfan syndrome

- Aortic root dilatation & ectopia lentis
- Aortic root dilatation & a FBN1 mutation
- Aortic root dilatation & ≥7 systematic points (see above)
- Ectopia lentis with a FBN1 mutation known to cause ascending aorta dilation
- Family history of MFS & ectopia lentis
- Family history of MFS & ≥7 systematic points (see above)
- · Family history of MFS & aortic root dilatation


MFS: Cardiovasular

- The most severe of these clinical problems include <u>aortic root</u> <u>dilatation</u> and <u>dissection</u>
- Skeletal deformities such as thoracolumbar scoliosis, thoracic lordosis, and pectus excavatum, may lead to pulmonary difficulties that include restrictive airway disease and <u>cor pulmonale</u> if the deformities are progressive and untreated.
- ✓ <u>Mitral valve prolapse</u> that requires valve replacement can occur as well.

دانشگاه علوم پزشکی بیرجند مرکز کریکی

کروہ قلب و عروق

Key issues in the assessment of Marfan syndrome

- The initial assessment should include a personal history, detailed family history and clinical examination including ophthalmology examination and transthoracic echocardiogram.
- The Ghent nosology cannot exclude Marfan syndrome in children, because of the age-dependent penetrance of many features.
- ✓ Younger patients with a positive family history but no fulfill the diagnostic criteria, should be offered further clinical evaluations at least until age 18, or until a diagnosis can be made.

Key issues in cardiovascular management in MFS

 β-Blocker therapy should be considered at any age if the aorta is dilated, but prophylactic treatment may be more effective in those with an aortic diameter of less than 4 cm.

Risk factors for aortic dissection include:

- o aortic diameter greater than 5 cm,
- o aortic dilatation extending beyond the sinus of Valsalva
- rapid rate of dilatation (>5% per year, or 1.5 mm/year in adults)
- \circ and family history of aortic dissection.

Key issues in cardiovascular management in MFS

- ✓ At least annual evaluation should be offered including:
- comprising clinical history
- examination
- echocardiography.
- ✓ In children, serial echocardiography at 6–12 month intervals is recommended, the frequency depending on the aortic diameter (in relation to body surface area) and the rate of increase.

Key issues in cardiovascular management in MFS

- Prophylactic aortic root surgery should be considered when the aortic diameter at the Sinus of Valsalva exceeds 5 cm.
- In pregnancy, there is an increased risk of aortic dissection if the aortic diameter exceeds 4 cm.
- Frequent cardiovascular monitoring throughout **pregnancy** and into the **puerperium** is advised.

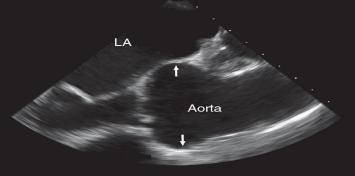


FIGURE 42.5 Transesophageal echocardiogram demonstrating an aortic roo aneurysm of 53 mm (arrows) in an individual with Marfan syndrome. LA, Left atrium

MFS : Pregnancy

Table 3 Management strategies in pregnant women with Marfansyndrome based on the size of the aorta

Aortic size (mm)	Follow-up	Delivery
<40	Follow-up monthly	Vaginal
40–45	Follow-up monthly	Cesarean section
≥45	Prophylactic surgery pre- pregnancy/or during pregnancy in women with rapid growth of the aorta	Cesarean section
	ተረ ጋታ	

Time	Recommendations	Special consideration
Preconception	To assess maternal and fetal risks:	Multidisciplinary care involving cardiologists, obstetricians, genetic specialists
	Past medical and family history	
	Information on the aortic size before conception	
	To provide proper information on possible prenatal diagnosi	S
	Evaluation of the entire aorta: TTE, CT/MRI	TEE when needed, to assess valvular pathology
	Initiation of β-blockers	Stop ARB when contraception is stopped
	Consider elective surgery when ascending aorta \ge 45 mm	Significant AR or MR with LV depression, according to the guidelines for valvular disease
During pregnancy	Serial TTE 4-12 weeks depends on the size of ascending aorta (timing see <i>Table 3</i>)	Use TEE and MRI without gadolinium when needed for optimal visualization
	Continue β-blockers	Preferable Metoprolol with target HR-reduction of 20% of rest HR
		Fetal monitoring with attention for fetal growth
		Strict control of BP
	Type A aortic dissection:	Multidisciplinary care management including
	Unurgent surgery is required	obstetricians, fetal care, cardiothoracic/vascular surgeon and anesthetists. Optimal perioperative
Non-via Type B diss	Viable fetus: c/s followed by aortic surgery	management including full maternal and fetal
	Non-viable fetus: aortic surgery with fetus-in-uterus	monitoring, attention to cardiopulmonary bypass, pulsatile perfusion, etc. Serial assessment of the aorta
	Type B dissection:	with MRI without gadolinium, thoracic endovascular
	Conservative treatment with attention to fetal monitoring	aortic repair can be considered in selected cases by an experienced team

Delivery C-section with the ascending aorta 40–45 and >45 mm, vaginal delivery in women with diameter <40 mm	•	Pain management
	Low threshold for assisted vaginal delivery (forceps, vacuum etc.)	
	Attention to symptoms of possible dissection	
	Caution with epidural anesthesia due to high prevalence of dural ectasia	
		Timely diagnosis and management of PPH

Postpartum Continue β-blockers Clinical aortic follow-up during at least 2 months (up to 6 moths)	Women's education is essential: to seek immediate	
		medical attention when symptoms of aortic dissection occur
High risk—weekly Low risk—monthly		

MFS : sport recommended

✓ Regular **aerobic activities** are recommended.

✓ **low-intensity activities** like golf, bowling,if

- No aortic root dilation
- No MR
- \odot No family history of aortic rupture or SCD.

MFS : sport Not recommended

 ✓ in activities that involve sustained muscle contraction such as weight lifting or rock climbing.

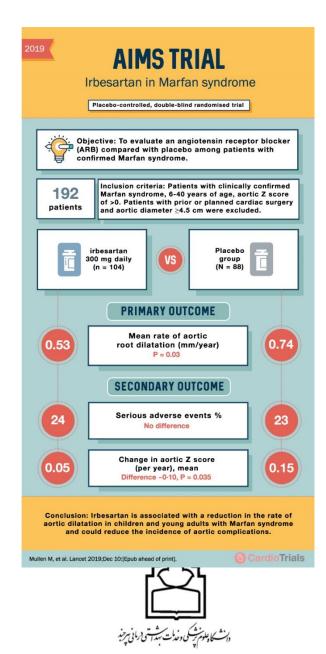
 High-intensity level activities such as basketball, ice hock

اربهای قد

MFS : sport Not recommended

 Contact sports are not advised to protect the aorta and the lens of the eye,

✓ scuba diving sho



کروه قلب و عرون دانشگاه طوم پزشکی بیرجند مرکز می مرکز می

MFS : Drug therapy for cardiovascular prevention

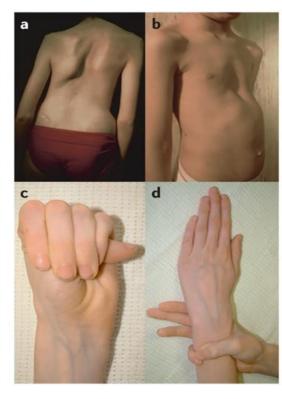
- ✓ In people with MFS and no previous aortic surgery:
- ARBs reduced the rate of increase of the aortic root Z score by about one half, including among those taking a β blocker.
- The effects of β blockers were similar to those of ARBs.
- Assuming additivity, combination therapy with both ARBs and β blockers from the time of diagnosis would provide even greater reductions in the rate of aortic enlargement than either treatment alone, which, if maintained over a number of years, would be expected to lead to a delay in the need for aortic surgery.

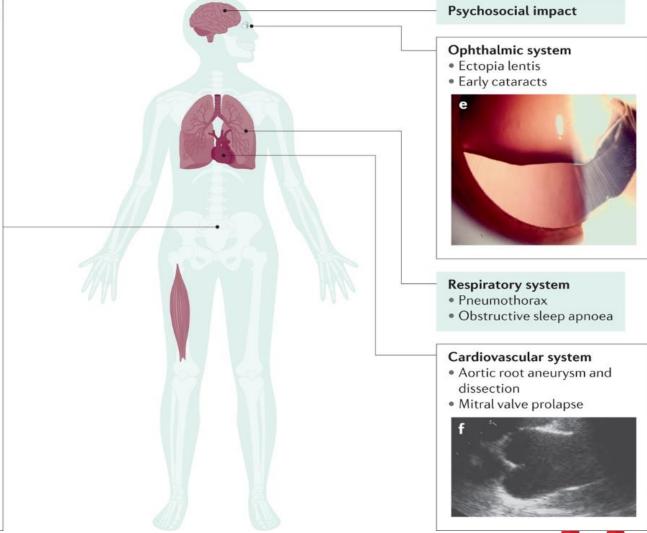
بسم الله الرحمن الرحيم

MARFAN SYNDROME KAZEMI T 28 Oct 2023

Figure 1: Family members with Marfan's syndrome. From left to right: father, first son and his daughter, second son and his two sons, third son, second daughter and her son, first daughter and her daughter.

- ✓ Dean, J. Marfan syndrome: clinical diagnosis and management. *Eur J Hum Genet* 15, 724–733 (2007).https://doi.org/10.1038/sj.ejhg.5201851
- Milewicz DM, Braverman AC, De Backer J, Morris SA, Boileau C, Maumenee IH, Jondeau G, Evangelista A, Pyeritz RE. Marfan syndrome.
 Nature Review Dis Primers. 2021 Sep 2;7(1):64. doi: 10.1038/s41572-021-00298-7.





Marfan syndrome

Musculoskeletal and integumentary systems

- Elongated digits (arachnodactyly)
- Disproportionately long legs and arms
- Scoliosis
- Dural ectasia
- Sternal deformity (pectus deformities)
- Joint hypermobility
- Stretch marks

Ghent II criteria

Systemic features excluding aortic disease, ectopia lentis and family history for the diagnosis of MFS.

- Wrist and thumb signs (3 points)
- Wrist or thumb sign (1 point)
- Anterior chest deformity (2 points)
- Hind foot deformity (2 points)
- Pneumothorax (2 points)
- Dural ectasia (2 points)
- Protrusion acetabuli (2 points)
- Reduced upper segment or lower segment and increased arm span to height ratio (1 point)
- Reduced elbow extension (1 point)
- Facial features: dolichocephaly, enophthalmos, downslanting palpebral fissures, malar hypoplasia, and retrognathia (1 point if 3 out 5 features are present)
- Skin striae other than due to pregnancy or obesity (1 point)
- Myopia >3 diopters (1 point)
- Mitral valve prolapse (1 point)

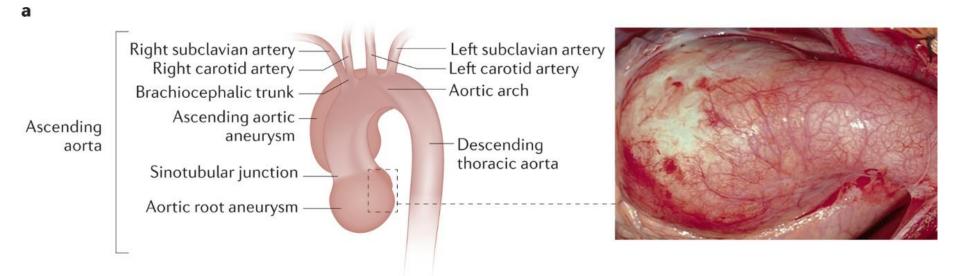
The total score of the systemic features is used in the diagnostic criteria.

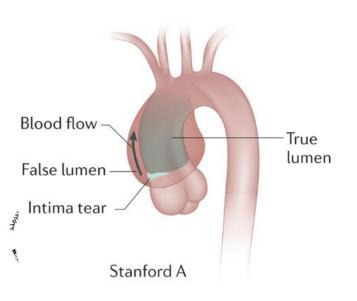
Requirement for the diagnosis of Marfan syndrome

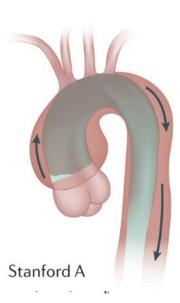
- Aortic root dilatation & ectopia lentis
- Aortic root dilatation & a FBN1 mutation
- Aortic root dilatation & ≥7 systematic points (see above)
- Ectopia lentis with a FBN1 mutation known to cause ascending aorta dilation
- Family history of MFS & ectopia lentis
- Family history of MFS & \geq 7 systematic points (see above)
- Family history of MFS & aortic root dilatation

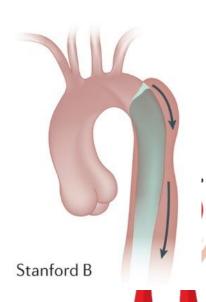
MFS: Diagnosis

MFS: Cardiovasular


- ✓ The most severe of these clinical problems include <u>aortic root</u> <u>dilatation</u> and <u>dissection</u>
- Skeletal deformities such as thoracolumbar scoliosis, thoracic lordosis, and pectus excavatum, may lead to pulmonary difficulties that include restrictive airway disease and <u>cor pulmonale</u> if the deformities are progressive and untreated.
- ✓ <u>Mitral valve prolapse</u> that requires valve replacement can occur as well.


MFS: Aortic Involvement




b Dissection involving the ascending aorta

c Dissection involving both the ascending and descending aorta

d Dissection not involving the ascending aorta

Key issues in the assessment of Marfan syndrome

- The initial assessment should include a personal history, detailed family history and clinical examination including ophthalmology examination and transthoracic echocardiogram.
- ✓ The Ghent nosology cannot exclude Marfan syndrome in children, because of the age-dependent penetrance of many features.
- ✓ Younger patients with a positive family history but no fulfill the diagnostic criteria, should be offered further clinical evaluations at least until age 18, or until a diagnosis can be made.

Key issues in cardiovascular management in MFS

β-Blocker therapy should be considered at any age if the aorta is dilated, but prophylactic treatment may be more effective in those with an aortic diameter of less than 4 cm.

✓ **Risk factors for aortic dissection** include:

- o aortic diameter greater than 5 cm,
- $\circ~$ aortic dilatation extending beyond the sinus of Valsalva
- rapid rate of dilatation (>5% per year, or 1.5 mm/year in adults)
- o and family history of aortic dissection.

Key issues in cardiovascular management in MFS

- ✓ At least annual evaluation should be offered including:
- comprising clinical history
- o examination
- echocardiography.
- ✓ In children, serial echocardiography at 6–12 month intervals is recommended, the frequency depending on the aortic diameter (in relation to body surface area) and the rate of increase.

Key issues in cardiovascular management in MFS

 Prophylactic aortic root surgery should be considered when the aortic diameter at the Sinus of Valsalva exceeds 5 cm.

- ✓ In pregnancy, there is an increased risk of aortic dissection if the aortic diameter exceeds 4 cm.
- Frequent cardiovascular monitoring throughout pregnancy and into the puerperium is advised.

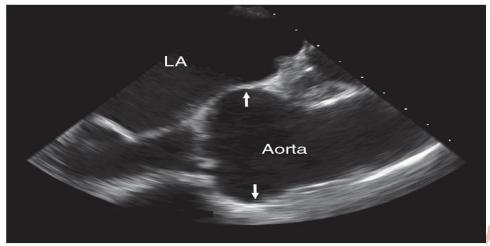


FIGURE 42.5 Transesophageal echocardiogram demonstrating an aortic roo aneurysm of 53 mm (arrows) in an individual with Marfan syndrome. LA, Left atrium

MFS : Pregnancy

Table 3 Management strategies in pregnant women with Marfansyndrome based on the size of the aorta

Aortic size (mm)	Follow-up	Delivery
<40	Follow-up monthly	Vaginal
40–45	Follow-up monthly	Cesarean section
≥45	Prophylactic surgery pre- pregnancy/or during pregnancy in women with rapid growth of the aorta	Cesarean section

Time	Recommendations	Special consideration	
Preconception	To assess maternal and fetal risks:	Multidisciplinary care involving cardiologists,	
	Past medical and family history	obstetricians, genetic specialists	
	Information on the aortic size before conception		
	To provide proper information on possible prenatal diagnosis	sis	
	Evaluation of the entire aorta: TTE, CT/MRI	TEE when needed, to assess valvular pathology	
	Initiation of β-blockers	Stop ARB when contraception is stopped	
	Consider elective surgery when ascending aorta ≥45 mm	Significant AR or MR with LV depression, according to the guidelines for valvular disease	
During pregnancy	Serial TTE 4–12 weeks depends on the size of ascending aorta (timing see <i>Table 3</i>)	Use TEE and MRI without gadolinium when needed for optimal visualization	
	Continue β-blockers	Preferable Metoprolol with target HR-reduction of 20% of rest HR	
		Fetal monitoring with attention for fetal growth	
		Strict control of BP	
	Type A aortic dissection:	Multidisciplinary care management including obstetricians, fetal care, cardiothoracic/vascular surgeon and anesthetists. Optimal perioperative management including full maternal and fetal	
	Unurgent surgery is required		
	Viable fetus: c/s followed by aortic surgery		
	Non-viable fetus: aortic surgery with fetus-in-uterus	monitoring, attention to cardiopulmonary bypass, pulsatile perfusion, etc. Serial assessment of the aorta with MRI without gadolinium, thoracic endovascular aortic repair can be considered in selected cases by a experienced team	
	Type B dissection:		
	Conservative treatment with attention to fetal monitoring		

		,
Delivery	C-section with the ascending aorta 40–45 and >45 mm, vaginal delivery in women with diameter <40 mm	Pain management
		Low threshold for assisted vaginal delivery (forceps, vacuum etc.)
		Attention to symptoms of possible dissection
		Caution with epidural anesthesia due to high prevalence of dural ectasia
		Timely diagnosis and management of PPH
Postpartum	Continue β-blockers	Women's education is essential: to seek immediate

Clinical aortic follow-up during at least 2 months (up to 6 moths)

Women's education is essential: to seek immediate medical attention when symptoms of aortic dissection occur

High risk-weekly

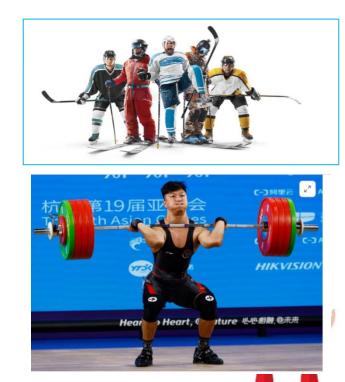
Low risk-monthly

MFS: sport recommended

✓ Regular **aerobic activities** are recommended.

✓ **low-intensity activities** like golf, bowling,if

- No aortic root dilation
- No MR
- \odot No family history of aortic rupture or SCD.

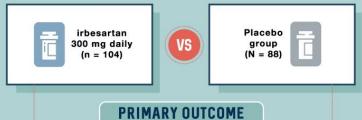


MFS : sport Not recommended

- ✓ in activities that involve sustained muscle contraction such as weight lifting or rock climbing.
- High-intensity level activities such as basketball, ice hockey, skiing, baseball

MFS : sport Not recommended

- Contact sports are not advised to protect the aorta and the lens of the eye,
- scuba diving should be avoided because of the increased risk of pneumothorax.


Irbesartan in Marfan syndrome

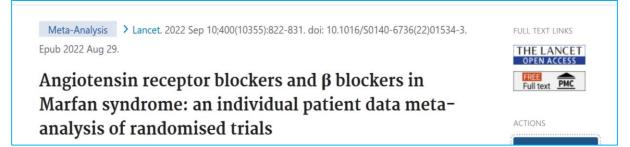
Placebo-controlled, double-blind randomised trial

Objective: To evaluate an angiotensin receptor blocker (ARB) compared with placebo among patients with confirmed Marfan syndrome.


Inclusion criteria: Patients with clinically confirmed Marfan syndrome, 6-40 years of age, aortic Z score of >0. Patients with prior or planned cardiac surgery and aortic diameter \geq 4.5 cm were excluded.

Conclusion: Irbesartan is associated with a reduction in the rate of aortic dilatation in children and young adults with Marfan syndrome and could reduce the incidence of aortic complications.

Mullen M, et al. Lancet 2019;Dec 10:[Epub ahead of print].


کروه قلب و عروق دانشگاه علوم بزشکی بیرجند

MFS : Drug therapy for cardiovascular prevention

- ✓ In people with MFS and no previous aortic surgery:
- ARBs reduced the rate of increase of the aortic root Z score by about one half, including among those taking a β blocker.
- \circ The effects of β blockers were similar to those of ARBs.
- Assuming additivity, combination therapy with both ARBs and β blockers from the time of diagnosis would provide even greater reductions in the rate of aortic enlargement than either treatment alone, which, if maintained over a number of years, would be expected to lead to a delay in the need for aortic surgery.

